MATH 430, SPRING 2022 HOMEWORK , DUE FRIDAY APRIL 15

Below $\mathfrak{A} = (\mathbb{N}, \langle S, +, \cdot, 0, 1)$ is the standard model of PA.

Problem 1. Show that there is there is a nonstandard model of PA, i.e. a model $\mathcal{B} \models PA$, such that $\mathcal{B} \ncong \mathfrak{A}$.

Hint: Let $\mathcal{L} = \mathcal{L}_{PA} \cup \{c\}$, where c is a new constant. Define a set of sentences Γ saying that c cannot be any finite successor of 0. Show that Γ is consistent with PA.

Recall that in class we proved:

Theorem 1. If $\mathcal{B} \models PA$, then \mathcal{B} is an end extension of \mathfrak{A} i.e. there is a one-to-one homomorphism $f : \mathbb{N} \to |\mathcal{B}|$ such that for all $a \in \operatorname{ran}(f)$ and $b \in |\mathcal{B}| \setminus \operatorname{ran}(f), a <^{\mathcal{B}} b$.

The homomorphism above is given by $f(n) = (S^{\mathcal{B}})^n (0^{\mathcal{B}})$, and it follows that \mathcal{B} contains an isomorphic copy of the natural numbers as an initial segment. For simplicity of notation, write *n* to denote $(S^{\mathcal{B}})^n (0^{\mathcal{B}})$. For example, we write 0 for $0^{\mathcal{B}}$, 1 for $S^{\mathcal{B}}(0) = 1^{\mathcal{B}}$, 2 for $S^{\mathcal{B}}(S^{\mathcal{B}}(0))$ and so on.

Similarly, for a formula $\phi(x_1, ..., x_n)$ and $a_1, ..., a_n$ in \mathbb{N} , we say that $PA \models \phi[a_1, ..., a_n]$, if for any model $\mathcal{B} \models PA$, $\mathcal{B} \models \phi[a_1, ..., a_n]$.

With this notation, we also proved:

Theorem 2. If $\mathcal{B} \models PA$, and $\phi(x_1, ..., x_n)$ is a Δ_0 -formula, then for any $a_1, ..., a_n$ in \mathbb{N} , $\mathfrak{A} \models \phi[a_1, ..., a_n]$ iff $\mathcal{B} \models \phi[a_1, ..., a_n]$.

You can use the above theorems for the next problems.

Problem 2. Suppose $\mathcal{B} \models PA$.

- (1) If $\phi(x_1, ..., x_n)$ is a Σ_1 -formula, show that for any $a_1, ..., a_n$ in \mathbb{N} , if $\mathfrak{A} \models \phi[a_1, ..., a_n]$, then $\mathcal{B} \models \phi[a_1, ..., a_n]$.
- (2) If $\phi(x_1, ..., x_n)$ is a Π_1 -formula, show that for any $a_1, ..., a_n$ in \mathbb{N} , if $\mathcal{B} \models \phi[a_1, ..., a_n]$, then $\mathfrak{A} \models \phi[a_1, ..., a_n]$.
- (3) If $\phi(x_1, ..., x_n)$ is a Δ_1 -formula, show that for any $a_1, ..., a_n$ in \mathbb{N} , $\mathfrak{A} \models \phi[a_1, ..., a_n]$ iff $\mathcal{B} \models \phi[a_1, ..., a_n]$.

Problem 3. Suppose $\mathcal{B} \models PA$ is a nonstandard model. Show that there is $b \in |\mathcal{B}|$ with infinitely many predecessors. Conclude that $(\mathcal{B}, <)$ is not a well order.

Recall that the **primitive recursive functions** are (total) functions $f : \mathbb{N}^k \to \mathbb{N}$, that are built up from the constant function f(x) = 0, projections, and the successor function S, by applying composition and the primitive recursion operation:

• $f(0, a_1, ..., a_n) = g(a_1, ..., a_n);$

• $f(n+1, a_1, ..., a_n) = h(n, f(n, a_1, ..., a_n), a_1, ..., a_n);$

where g, h are primitive recursive.

Problem 4. Prove that f(a,b) = a + b is primitive recursive.

Problem 5. Prove that $f(a, b) = a \cdot b$ is primitive recursive.

Problem 6. Prove that $f(a) = 2^a$ is primitive recursive.